Innovación allana camino en estos dispositivos

Las innovaciones en tecnología médica mediante la combinación de ciencia y medicina han mejorado significativamente la atención al paciente.

En particular, la llegada de dispositivos electrónicos implantables, como los que se utilizan en el corazón o el cerebro, marca un avance importante, ya que ofrecen monitoreo y regulación en tiempo real de señales fisiológicas.

Estos avances presentan soluciones innovadoras para afecciones complejas como la enfermedad de Parkinson. Sin embargo, la durabilidad de estos dispositivos sigue siendo un desafío. Normalmente, los pacientes con dispositivos implantados deben someterse a cirugías frecuentes para reemplazar las baterías, un proceso plagado de riesgos y cargas, tanto financieras como físicas.

Le puede interesar:

Técnica mínimamente invasiva para procedimiento de válvula cardíaca más seguro

La investigación actual está profundizando en los dispositivos médicos implantables que funcionan de forma inalámbrica, pero la búsqueda de una fuente de energía segura y eficiente y de materiales compatibles continúa.

El titanio (Ti) se utiliza comúnmente por su biocompatibilidad y resistencia, pero su incapacidad para transmitir ondas de radio requiere una antena adicional para la energía inalámbrica, lo que aumenta el tamaño del dispositivo y la incomodidad para el paciente.

En un desarrollo innovador, un equipo de investigación de la Universidad de Ciencia y Tecnología de Pohang (POSTECH, Gyeongbuk, Corea) ha diseñado materiales electrostáticos sensibles incluso a señales de ultrasonido débiles, allanando el camino para dispositivos electrónicos implantables permanentemente en biomedicina.

Le puede  interesar:

Chaleco de ECG permite monitorización cardíaca no invasiva y sin intromisión

El equipo eligió el ultrasonido en lugar de las ondas de radio debido a su historial de seguridad establecido en diagnósticos y tratamientos médicos. Desarrollaron un material electrostático que responde a ultrasonidos débiles combinando polímeros altamente dieléctricos (P (VDF-TrFE)) con titanato de calcio y cobre (CCTO, CaCu3Ti4O12), una cerámica con una constante dieléctrica alta.

Este material produce electricidad estática a través de la fricción entre capas, generando energía eléctrica eficiente con una impedancia de salida excepcionalmente baja, lo que garantiza una transmisión de electricidad eficiente.

El equipo de investigación empleó esta tecnología innovadora para desarrollar un estimulador neurológico implantable alimentado por transmisión de energía basada en ultrasonido, eliminando la necesidad de baterías.

Esto se corroboró mediante una rigurosa validación experimental. En ensayos con modelos animales, el dispositivo funcionó a niveles estándar de ultrasonido de imágenes (500 mW/cm2) que imponen una tensión mínima al cuerpo humano. Además, alivió con éxito los síntomas asociados con los trastornos de la vejiga hiperactiva mediante la estimulación de los nervios, lo que demuestra su potencial para transformar la atención al paciente con su diseño de vanguardia sin baterías.

«Hemos abordado los desafíos en el campo de los dispositivos médicos implantables utilizando tecnología de transmisión de energía basada en ultrasonido que es inofensiva para el cuerpo humano», dijo el profesor Sung-Min Park de POSTECH. «Esta investigación sirve como ejemplo de introducción de tecnología de materiales avanzada en dispositivos médicos, y anticipamos que promoverá el surgimiento de una industria médica de próxima generación, incluido el tratamiento de enfermedades intratables mediante dispositivos implantables».